- Родительская категория: Статьи
- Категория: Электроника
- Автор: Генератор статей
- Просмотров: 3105
Особенности применения трансформаторов в импульсных преобразователях электрической энергии. Часть 1
Как известно, существует всего два электромагнитных прибора, с помощью которых параметры электрической энергии можно преобразовать с максимально возможной эффективностью: дроссель и трансформатор. С технологической точки зрения они практически одинаковы и отличаются только режимом работы: трансформатор пропускает энергию «сквозь себя», не накапливая ее в магнитном поле, а дроссель работает по принципу «взял-сохранил-отдал».
В [1] было показано, что при одной и той же преобразуемой мощности и рабочей частоте габаритные размеры трансформатора могут быть до восьми раз меньше чем у дросселя. Однако использование трансформатора приводит к усложнению схемы и проблемам при регулировке выходного напряжения, поэтому маломощные (до 150…200 Вт) преобразователи обычно строятся по схемам на основе дросселя, а мощные…
А с мощными преобразователями будем разбираться в этой статье, которая подводит итог первой части цикла об импульсном преобразовании электрической энергии, посвященного особенностям схемотехники их силовой части. Как обычно, читателю рекомендуется предварительно ознакомиться с уже опубликованными в журнале и на сайте РадиоЛоцман материалами [1 – 8], а для более глубокого понимания сути происходящих процессов – с более «тяжелыми» статьями в научных журналах [9 – 11].
Структурная схема преобразователя на основе трансформатора
Итак, изучив [1 – 7], попробуем синтезировать мощный преобразователь, основным элементом которого является трансформатор. Согласно формулам, полученным в [1], габариты трансформатора зависят от его рабочей частоты. Поскольку частота напряжения на входе и выходе преобразователей невелика (50...400 Гц), а то и вовсе равна нулю (для DC/DC преобразователей), для того чтобы трансформатор работал на высокой частоте, необходимы два дополнительных узла: модулятор и демодулятор. Модулятор преобразует входное низкочастотное напряжение в напряжение высокой частоты, амплитуда которого пропорциональна напряжению на входе, а демодулятор выполняет обратную функцию (Рисунок 1).
Рисунок 1. | Структурная схема преобразователя на основе трансформатора. |
Предвидя возможную (и обоснованную) критику со стороны читателей, уже знакомых со схемотехникой мощных преобразователей, сразу обращаю внимание, что в DC/DC преобразователях, исторически появившихся первыми, эти узлы в свое время назвали, соответственно, «инвертор» и «выпрямитель», поскольку они действительно преобразовывали постоянный ток в переменный и наоборот. Однако импульсным способом можно изменять величину не только постоянного, но и переменного напряжения [8], поэтому соответствующие узлы AC/AC преобразователей, у которых на входе и выходе присутствует переменного напряжение, уже как-то технически некорректно называть инверторами или выпрямителями.
Итак, преобразователь на Рисунке 1 позволяет изменить величину напряжения на входе только на какую-то конкретную величину, однако его еще нужно как-то регулировать, ведь входное напряжение и ток нагрузки практически никогда не бывают стабильными. Можно, конечно, использовать трансформатор с отпайками (Рисунок 2), но такая схема со ступенчатой регулировкой вряд ли удовлетворит требования к качеству выходного напряжения, необходимые в большинстве приложений, да и сложность такой схемы намного больше, чем у известных решений.
Рисунок 2. | Схема преобразователя с дискретной регулировкой выходного напряжения. |
Из опыта построения «классических» выпрямителей на основе низкочастотных трансформаторов известно, что для точной регулировки выходного напряжения используют специальный узел – стабилизатор, устанавливаемый на выходе устройства (Рисунок 3). Именно такой принцип – двукратного преобразования напряжения (энергии) – и используется при построении мощных импульсных преобразователей: вначале система модулятор-трансформатор-демодулятор преобразовывает входное напряжение до некоторого промежуточного нестабилизированного уровня, а затем стабилизатор изменяет его до требуемого значения с необходимой точностью.
Рисунок 3. | Структурная схема стабилизированного преобразователя на основе трансформатора. |
Способы реализации преобразователя на основе трансформатора
Но какую схему использовать для построения стабилизатора? Использование «классических» компенсационных стабилизаторов, например 78хх/79хх, обладающих большими габаритами из-за наличия радиатора и низким КПД, сведет к нулю весь выигрыш от использования трансформатора. LDO-стабилизаторы, являющиеся разновидностью компенсационных схем, эффективны только при небольшой разнице между входным и выходным напряжением; при ее увеличении их КПД также стремительно падает. Да и большинство компенсационных схем рассчитано на использование в схемах постоянного тока и поддерживают только режим передачи [3]. Но ведь иногда необходимо преобразовать переменное напряжение или работать на нагрузку реактивного характера [3, 8].
Но почему стабилизатор обязательно должен быть компенсационным? Обратите внимание, что этот узел тоже является преобразователем напряжения, а это значит, что для его построения, теоретически, можно использовать любую из схем на основе как дросселя, так и трансформатора. Однако преобразователь на основе трансформатора в устройстве уже есть, и мы как раз пытаемся компенсировать его недостатки, поэтому остаются «дроссельные» схемы, способные в силу своего принципа работы [2, 3] плавно изменять в широких пределах коэффициент передачи, что полностью компенсирует недостаток плохо регулируемых «трансформаторных» схем.
В [2] показано, что «базовой» схемой для «дроссельных» преобразователей является обратноходовая. Но в ней через магнитопровод дросселя передается вся мощность нагрузки, а это означает, что в устройстве все равно остается дроссель, габариты которого будут как минимум в 8 раз больше трансформатора. А поскольку обратноходовая схема обеспечивает гальваническую развязку и за счет изменения коэффициента трансформации дросселя [4] может работать при любом соотношении напряжений на входе и выходе, то использование трансформатора вместе с сопутствующими узлами (модулятором и демодулятором) при построении стабилизатора по обратноходовой схеме становится полностью бессмысленным.
Но есть еще три схемы «дроссельных» преобразователей, которые можно получить, соединив определенным образом вход и выход обратноходового импульсного регулятора [2] c входом и выходом преобразователя: понижающая, повышающая и инвертирующая. Инвертирующую схему можно сразу исключить, поскольку она по своим характеристикам мало чем отличается от обратноходовой, а вот на понижающую и повышающую следует обратить внимание, ведь их главный недостаток – отсутствие гальванической развязки – устраняется наличием трансформатора.
Рисунок 4. | Зависимость величины относительной преобразуемой мощности от соотношения напряжений на входе и выходе «дроссельных» преобразователей. |
В [2] было показано, что при соединении входа или выхода импульсного регулятора последовательно с входом и выходом преобразователя величина преобразуемой мощности РИР(мощности, проходящей через магнитное поле магнитопровода дросселя) зависит от соотношения напряжений на входе и выходе UВХ и выходе UВЫХ преобразователя (Рисунок 4). Таким образом, если нам необходимо уменьшить (увеличить) напряжение только на 10%, то при использовании понижающей (повышающей) схемы необходим дроссель с размерами в 10 раз меньшими, чем у дросселя обратноходового преобразователя (при условии, что магнитопроводы дросселей будут выполнены из одного и того же материала и работать в одинаковых режимах [6]). В этом случае размеры дросселя уже становится соизмеримыми с размерами трансформатора, работающего на той же частоте. Но какую схему использовать для построения стабилизатора: понижающую или повышающую?
Рисунок 5. | Схемы преобразователей на основе трансформатора с импульсными стабилизаторами понижающего (вверху) и повышающего (внизу) типов. |
На первый взгляд оба варианта (Рисунок 5) идентичны. В общем случае в этих схемах трансформатор и стабилизатор могут работать в асинхронном режиме на разных частотах и быть совершенно независимыми узлами. Даже если трансформатор и дроссель стабилизатора будут работать синхронно на одной частоте, использование такого подхода уже даст неплохой выигрыш в габаритах индуктивных элементов по сравнению с дросселем «базовой» обратноходовой схемы: трансформатор будет меньше в 8 раз, а дроссель – в 5…10 раз (при использовании оптимальных режимов работы магнитопровода [6]). Это в итоге позволит уменьшить общую массу и габариты индуктивных элементов такого устройства как минимум вдвое. Однако сложность такой схемы теперь становится очень высокой – только наличие двух контроллеров, даже работающих в синхронном режиме, уже может создать множество проблем для разработчика, ну а наличие шести силовых ключей приведет к уменьшению КПД и увеличению, за счет дополнительных радиаторов, габаритов и стоимости преобразователя.
Список источников
- Русу А.П. Зачем нужен трансформатор в импульсном преобразователе электрической энергии? // Радиолоцман – 2018. – №9. – С.24 – 28 (Часть 1). – №10. – С.26 – 29 (Часть 2).
- Русу А.П. «Откуда появились базовые схемы преобразователей».
- Русу А.П. «Почему импульсные преобразователи "не любят" "легкую" нагрузку».
- Русу А.П. «Почему обмотки дросселя обратноходового преобразователя могут иметь разное число витков».
- Русу А.П. «Может ли ток в обмотке дросселя измениться мгновенно?»
- Русу А.П. «В каком режиме должен работать магнитопровод дросселя импульсного преобразователя?»
- Русу А.П. «Как определить размеры магнитопровода дросселя импульсного преобразователя».
- Русу А.П. «Импульсное преобразование переменного тока».
- Кадацкий А.Ф., Русу А.П. Анализ электрических и магнитных процессов в дросселях импульсных преобразователей электрической энергии // Технология и конструирование в электронной аппаратуре (ТКЭА) – 2016. – №6. – С.17 – 29.
- Кадацкий А.Ф., Русу А.П. Анализ принципов построения и режимов работы импульсных преобразователей электрической энергии // Практическая силовая электроника. – 2016. – №2(62). – С.10 – 24.
- Kadatskyy А.F., Rusu A.P. Determination of the necessary inductor core dimensions for switching electrical energy converters // Наукові праці ОНАЗ ім. О.С. Попова. – 2018. – №1. – С. 125–134.
Александр Русу, Одесса, Украина
Журнал РАДИОЛОЦМАН, ноябрь 2018
Источник: РадиоЛоцман