Простые устройства
Просто об устройствах

  • Родительская категория: Статьи
  • Категория: Теория
  • Просмотров: 260

Плавкие предохранители Littelfuse

Номенклатура компании Littelfuse содержит широкий спектр моделей плавких предохранителей: от традиционныхстеклянных и керамических до автомобильных и SMD-предохранителей.

Идея использования плавкой вставки для защиты от коротких замыканий была предложена еще в XIX веке. Первый предохранитель, созданный в 1890 году в лаборатории Эдисона, представлял собой открытую конструкцию на базе лампочки с плавкой вставкой из проволоки. Более привычная для нас форма и концепция сменных защитных компонентов была реализована в 1914 году, когда появились предохранители общего назначения и автомобильные предохранители. Компания Littelfuse является не только одним из лидеров, но и одним из пионеров в данном сегменте рынка. Первые низковольтные предохранители Littelfuse были представлены еще в 1927 году. Сейчас компания выпускает широкий спектр моделей: традиционные стеклянные и керамические, пленочные, автомобильные и SMD-предохранители, а также другие элементы защиты, в частности – самовосстанавливающиеся предохранители.

В данной статье проводится обзор плавких предохранителей Littelfuse общего назначения и специальных предохранителей для взрывоопасных приложений.

Нормативные документы

Безопасность является важнейшим фактором как в производственных процессах, так и в повседневной жизни людей. Поэтому предохранители должны в обязательном порядке отвечать жестким требованиям существующих стандартов безопасности. Любой официальный производитель указывает, каким стандартам безопасности отвечает его продукция.

В различных странах существуют собственные регулирующие органы и нормативные акты. Для отечественного рынка интерес представляют в первую очередь стандарты МЭК. В частности:

  • ГОСТ Р МЭК 60127-1-2005 Миниатюрные плавкие предохранители. Часть 1. Терминология для плавких предохранителей и общие требования к миниатюрным плавким вставкам;
  • ГОСТ МЭК 60127-2-2013 Предохранители миниатюрные плавкие. Часть 2. Трубчатые плавкие вставки;
  • ГОСТ МЭК 60127-3-2013 Предохранители миниатюрные плавкие. Часть 3. Субминиатюрные плавкие вставки;
  • ГОСТ МЭК 60127-4-2011 Миниатюрные плавкие предохранители. Часть 4. Универсальные модульные плавкие вставки для объемного и поверхностного монтажа;
  • ГОСТ 30801.5-2012 (МЭК 60127-5:1989) Миниатюрные плавкие предохранители. Руководство по сертификации миниатюрных плавких вставок;
  • ГОСТ МЭК 60127-6-2013 Предохранители миниатюрные плавкие. Часть 6. Держатели предохранителей с миниатюрной плавкой вставкой.

Согласно ГОСТ Р МЭК 60127-1-2005, предохранитель представляет собой устройство, которое за счет расплавления одной или нескольких его деталей, имеющих определенную конструкцию и размеры, размыкает цепь, в которую оно включено, прерывая ток, если он превышает заданное значение в течение определенного времени. В этом же стандарте представлены характеристики предохранителей и общие требования к ним.

Основные характеристики предохранителей

Рядовой пользователь, выбирая предохранитель, ориентируется только на форм-фактор, рейтинг тока и рабочее напряжение. Однако с точки зрения разработчика все оказывается значительно сложнее, так как ему приходится учитывать все особенности предохранителей и условий их эксплуатации. Рассмотрим набор основных характеристик плавких предохранителей.

Ампер-секундная характеристика. Наиболее важной и информативной характеристикой плавкого предохранителя является вовсе не рейтинг тока, а ампер-секундная характеристика, которая представляет собой кривую зависимости фактического времени срабатывания от ожидаемого постоянного/переменного тока в установленных условиях срабатывания [1]. В качестве примера на рисунке 1 изображена ампер-секундная характеристика SMD-предохранителей серии 438 производства Littelfuse.

Рис. 1. Ампер-секундная характеристика предохранителей серии 438

Рис. 1. Ампер-секундная характеристика предохранителей серии 438

Ампер-секундная характеристика говорит о том, что предохранитель не является идеальным элементом и имеет существенную инерцию – для него скорость срабатывания зависит от силы тока. Чем выше ток, тем быстрее расплавится плавкая вставка. В частности, из рисунка 1 видно, что предохранитель с рейтингом тока 0,25 А даже при токе 0,6 А сработает только через 10 секунд, а при токе 1 А скорость срабатывания составит около 4 мс.

По виду ампер-секундной характеристики ГОСТ Р МЭК 60127-1-2005 делит предохранители на следующие типы [1]:

  • FF – сверхбыстродействующие плавкие вставки;
  • F – быстродействующие плавкие вставки;
  • М – полузамедленные плавкие вставки;
  • Т – замедленные плавкие вставки;
  • ТТ – сверхзамедленные плавкие вставки.

Важно понимать, что инерция и задержка срабатывания предохранителя – это не всегда плохо. Дело в том, что во многих приложениях присутствуют «штатные» токовые перегрузки. Например, включение мощного источника питания сопровождается значительными пусковыми токами, связанными с зарядом выходной емкости самого источника и емкостей нагрузки. Однако в дальнейшем ток потребления этого же источника питания оказывается существенно ниже. Таким образом, «медленный» предохранитель не успеет сработать и пропустит пусковую перегрузку, но если в цепи возникнет постоянное КЗ – он благополучно защитит схему.

Ампер-секундная характеристика имеет очень неприятную особенность, которая следует из представленного выше определения. Дело в том, что она приводится для «установленных условий срабатывания». Под условиями срабатывания в первую очередь стоит понимать температуру окружающей среды и качество теплоотвода от плавкой вставки.

Рейтинг тока, указываемый производителем, характеризует определенное значение тока, который плавкая вставка может пропускать без расплавления в течение заданного времени. Например, для предохранителей серии 438 время срабатывания при рейтинговом токе составляет не менее 4 часов.

Температурная зависимость тока срабатывания. Срабатывание предохранителя происходит, когда температура плавкой вставки достигает температуры плавления. Очевидно, что чем выше температура окружающей среды – тем меньше энергии потребуется, чтобы разогреть плавкую вставку. Другим словами, чем выше температура среды – тем меньше будет ток, при котором сработает предохранитель.

В качестве примера на рисунке 2 представлена температурная зависимость рейтинга тока для SMD-предохранителей серии 438 производства Littelfuse. Из графика видно, что изменение рейтинга тока во всем диапазоне рабочих температур -55..150°С составляет ±35%.

Рис. 2. Температурная зависимость рейтинга тока для предохранителей серии 438

Рис. 2. Температурная зависимость рейтинга тока для предохранителей серии 438

Здесь необходимо сделать одно важное замечание. В руководстве по выбору предохранителей Littelfuse [2] явно говорится о том, что разработчики не должны путать температуру окружающей среды и комнатную температуру («ambient temperature» и «room temperature»). Дело в том, что для предохранителя важна именно температура среды, которая его непосредственно окружает. Достаточно очевидно, что, например, при работе источника питания происходит разогрев транзисторов и других силовых компонентов. Этот разогрев приводит к повышению температуры воздуха внутри корпуса. В результате температура окружающей среды для предохранителя внутри корпуса будет существенно выше, чем снаружи.

Кроме того, не стоит забывать и об обратном процессе теплопередачи. Предохранитель имеет сопротивление и разогревается вследствие омических потерь I2R. Часть тепла может отводиться за счет печатной платы или циркуляции воздуха. Очевидно, что чем лучше качество теплоотвода, тем больше энергии потребуется, чтобы разогреть плавкую вставку до состояния срабатывания. Это особенно важно для SMD-компонентов.

I2t (интеграл Джоуля). У ампер-секундной характеристики есть еще один недостаток. Она приводится для постоянного или синусоидального переменного тока, однако во многих приложениях предохранитель защищает цепи, в которых протекают импульсные токи различной формы. Чтобы посчитать энергию, выделяемую в предохранителе, используют интеграл Джоуля I2t.

I2t (интеграл Джоуля) – интеграл квадрата тока за определенный период времени. I2t, выраженный в амперах в квадрате в секунду (А2×с), равен энергии в джоулях, выделяемой в резисторе 1 Ом в цепи, защищаемой плавким предохранителем [1].

Расчет I2t является важным параметром при выборе предохранителя. Подробнее о методике выбора предохранителей подробно рассказывается в следующем разделе.

Отключающая способность плавкой вставки (breaking capacity of a fuse-link). Чем выше ток КЗ, тем быстрее сработает предохранитель. Однако при чрезмерном увеличении тока разрушение плавкой вставки может оказаться слишком быстрым, в результате чего будет поврежден корпус компонента. В ряде случаев предохранитель попросту взорвется. По этой причине для каждого предохранителя производитель указывает отключающую способность – значение ожидаемого тока (при переменном токе эффективное значение), который плавкая вставка способна отключать при установленном напряжении и заданных условиях эксплуатации [1].

Рейтинг напряжения. При срабатывании предохранителя электрическая цепь оказывается физически разомкнутой. Однако при существенном повышении напряжения может произойти пробой (по воздуху, по корпусу и так далее). По этой причине в документации на предохранители в обязательном порядке указывают рейтинг напряжения.

С учетом всего вышесказанного становится понятно, что выбор оптимального предохранителя не так уж прост. С одной стороны, разработчик должен выполнить расчет I2t для заданного тока, учесть температурную зависимость и выбрать подходящую модель, а с другой – в обязательном порядке выполнить полевые испытания, чтобы учесть все особенности теплового поведения предохранителя в составе конечного устройства.

Выбор предохранителя

Выбор предохранителя определяется исходными данными и особенностями конкретного приложения [1]:

  • Номинальный ток. Номинальный ток цепи определяет рейтинг тока предохранителя. Чтобы защититься от незапланированных срабатываний, рекомендуют использовать запас по току 25%. Например, если номинальный ток цепи составляет 7,5 А, то, с учетом запаса, следует выбирать предохранитель, ориентируясь на величину тока 10 А.
  • Рабочая температура также сильно влияет на выбор рейтинга тока предохранителя, поэтому для нормальной работы необходимо делать дополнительный запас. Например, если предполагается работа предохранителей серии 438 при температуре 75°С, то запас должен составлять около 15% (см. рисунок 2).

Рассмотрим пример. Допустим, предохранитель серии 438 должен работать при температуре 75°С и номинальном токе 1,5 А. Очевидно, что с учетом пунктов 1 и 2 для нормальной работы будет недостаточно предохранителя с рейтингом 1,5 А. Необходимый рейтинг тока с запасом составляет: 1,5 А/(0,75 × 0,85) ≈ 2,4 А → 2,5 А (наиболее близкий номинал).

  • Рабочее напряжение. Рейтинг напряжения предохранителя должен быть больше, чем максимально возможное напряжение в схеме.
  • Скорость срабатывания. По скорости срабатывания предохранители делятся на пять типов (FF – сверхбыстродействующие, F – быстродействующие, М – полузамедленные, Т – замедленные, ТТ – сверхзамедленные). Выбор конкретного предохранителя следует делать с учетом ампер-секундных характеристик, предоставляемых производителем.
  • Максимальный ток КЗ. Для предотвращения расплавления или взрыва предохранителя необходимо, чтобы его отключающая способность была выше максимального тока КЗ.
  • Требования к габаритам, типоразмеру и способу монтажа. В настоящее время существует широкий выбор предохранителей для поверхностного монтажа, монтажа в отверстия и для установки в специальные держатели. Выбор конкретной серии определяется особенностями каждого конкретного приложения.
  • Соответствие требованиям стандартов. Использование того или иного предохранителя допускается только в том случае, если он сертифицирован и соответствует требованиям установленных стандартов. Кроме группы стандартов ГОСТ Р МЭК 60127, существуют и другие стандарты. Например, для работы в условиях взрывоопасных сред предохранитель должен отвечать положениям ГОСТ 31610.11-2014 (IEC 60079-11:2011) «Взрывоопасные среды. Часть 11. Оборудование с видом взрывозащиты «искробезопасная электрическая цепь «i» (с Поправкой)».
  • Устойчивость к импульсным воздействиям. На этом пункте следует остановиться подробнее.

Этих данных хватит для выбора предохранителя, работающего в цепи с постоянной или переменной синусоидальной токовой нагрузкой, если эта нагрузка не превышает рейтинг тока предохранителя. Однако существует множество приложений, в которых нагрузка носит импульсный характер. Речь идет о пусковых токах и различных переходных процессах. В таких приложениях предохранитель должен выдерживать кратковременные импульсы тока, превышающие его рейтинг тока, и при этом не срабатывать.

Чтобы определить, сработает или не сработает предохранитель при возникновении заданного числа токовых импульсов, используют интеграл Джоуля I2t, который можно рассчитать вручную или с помощью специальных утилит. Рассмотрим каждый из способов отдельно.

Расчет I2t предохранителя

При ручном расчете сначала нужно определиться с формой импульсов. Далее с учетом формы тока определить величину интеграла I2t для одного импульса. Для импульсов стандартной формы существуют простые расчетные формулы (рисунок 3) [1].

Рис. 3. Расчет I2t для импульсов различной формы

Рис. 3. Расчет I2t для импульсов различной формы

Например, если предполагается протекание прямоугольных импульсов тока (рисунок 3 а) амплитудой Ip = 1 А и длительностью t = 5 мс, то I2t (импульса) рассчитывается по формуле 1:

http://www.w3.org/1998/Math/MathML" display="block">I2t(импульса)=Ip2t=12×0.005=0.005A2c(1)" role="presentation" style="display: inline-block; line-height: 0; text-indent: 0px; text-align: center; text-transform: none; font-style: normal; font-weight: normal; font-size: 18px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;">I2t(импульса)=I2pt=12×0.005=0.005A2c(1)I2t(импульса)=Ip2t=12×0.005=0.005A2c(1)

Далее необходимо учесть количество импульсов. Для этого рассмотрим рисунок 4 [1]. Предположим, что ожидается прохождение 6000 импульсов, тогда из графика можно определить номинальную величину I2t предохранителя (формула 2):

http://www.w3.org/1998/Math/MathML" display="block">I2t(предохранителя)=I2t(импульса)0.3=0.005A2c0.3=0.016A2c(2)" role="presentation" style="display: inline-block; line-height: 0; text-indent: 0px; text-align: center; text-transform: none; font-style: normal; font-weight: normal; font-size: 18px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;">I2t(предохранителя)=I2t(импульса)0.3=0.005A2c0.3=0.016A2c(2)I2t(предохранителя)=I2t(импульса)0.3=0.005A2c0.3=0.016A2c(2)

Полученное значение должно быть больше, чем значение, указанное в документации. В противном случае предохранитель сработает при возникновении последовательности импульсов.

Рис. 4. Учет числа импульсов при расчете требуемого I2t для предохранителя

Рис. 4. Учет числа импульсов при расчете требуемого I2t для предохранителя

Ручной расчет I2t и определение запасов по току не являются сложными операциями, однако для упрощения работы можно использовать онлайн-утилиту Littelfuse iDesign Tool, которая позволяет выбрать подходящий предохранитель за несколько кликов мыши.

Использование онлайн-утилиты от Littelfuse для выбора предохранителя

Littelfuse iDesign Tool – онлайн-утилита, которая максимально упрощает выбор оптимального предохранителя и автоматизирует расчеты запасов по току и I2t. Кроме того, утилита позволяет разработчику задавать произвольную форму импульсов при определении I2t.

Процесс выбора предохранителя разбит на семь шагов.

Шаг 1. Сперва пользователь должен задать начальные условия для расчета: максимальное рабочее напряжение, номинальный ток, предельный ток КЗ, максимальную рабочую температуру (рисунок 5). Утилита также предлагает выбрать область применения предохранителя (телекоммуникации, военная электроника и так далее). К сожалению, в настоящее время специализированные модели предохранителей в онлайн-утилите отсутствуют. При выборе, например, взрывоопасных предохранителей утилита просто перенаправит пользователя на соответствующую страницу сайта, и выбор нужно будет делать вручную.

Рис. 5. Шаг 1. Определение исходных данных и требований

Рис. 5. Шаг 1. Определение исходных данных и требований

Шаг 2. На втором шаге необходимо выбрать стандарты, требованиям которых должен отвечать предохранитель (рисунок 6).

Рис. 6. Шаг 2. Выбор стандартов

Рис. 6. Шаг 2. Выбор стандартов

Шаг 3. На этом этапе пользователю предлагается выбрать тип предохранителя: SMD, выводной для пайки в отверстия, для установки в держатель, с радиальными выводами, с аксиальными выводами (рисунок 7). 

Рис. 7. Шаг 3. Выбор типа предохранителя

Рис. 7. Шаг 3. Выбор типа предохранителя

Шаг 4. С учетом указанных ранее данных и требований программа автоматически подбирает подходящие серии предохранителей. Пользователю необходимо выбрать один из предложенных вариантов (рисунок 8).

Рис. 8. Шаг 4. Выбор серии

Рис. 8. Шаг 4. Выбор серии

Шаг 5. Определение формы и параметров импульсов тока для расчета I2t. В данном случае у пользователя есть целых три варианта. Первый вариант подходит для расчета устойчивости предохранителя к импульсам стандартной формы (рисунок 9).

Рис. 9. Шаг 5. Задание параметров импульсов стандартной формы для расчета I2t

Рис. 9. Шаг 5. Задание параметров импульсов стандартной формы для расчета I2t

Шаг 6. Второй вариант подразумевает определение формы импульсов произвольной формы по точкам и дальнейший автоматический расчет I2t (рисунок 10).

Рис. 10. Шаг 6. Определение основных требований

Рис. 10. Шаг 6. Определение основных требований

Шаг 7. Если же пользователь уже рассчитал значение I2t вручную, то его можно задать напрямую (рисунок 11). 

Рис. 11. Шаг 7. Определение основных требований

Рис. 11. Шаг 7. Определение основных требований

Шаг 8. С учетом указанных ранее данных и требований программа автоматически подбирает наиболее подходящие модели предохранителей. Пользователю необходимо выбрать один из предложенных вариантов (рисунок 12).

Рис. 12. Шаг 8. Определение основных требований

Рис. 12. Шаг 8. Определение основных требований

Шаг 9. Проверка быстродействия предохранителя (желаемого времени срабатывания) при заданном токе КЗ. На этом этапе программа автоматически строит ампер-секундные характеристики с учетом ранее определенных параметров. Пользователю остается только убедиться, что выбранный предохранитель обладает достаточным быстродействием. При необходимости можно вернуться на несколько шагов назад и без проблем повторить расчеты с другой серией или моделью предохранителя (рисунок 13).

Рис. 13. Шаг 9. Определение основных требований

Рис. 13. Шаг 9. Определение основных требований

Зачем нужны практические испытания

К сожалению, предложенные методики выбора оптимального предохранителя основаны на теоретических расчетах и не позволяют учесть ряд параметров. Например, сложно оценить качество отвода тепла от предохранителя по плате или качество воздушного обмена. Также могут всплыть и другие отклонения и особенности. В результате разработчик должен проверять работу предохранителей в составе готового блока.

Обзор плавких предохранителей Littelfuse

Компания Littelfuse является одним из лидеров в области производства плавких предохранителей. В номенклатуре компании присутствуют SMD-предохранители, предохранители с радиальными и аксиальными выводами, а также предохранители различных специализированных серий и моделей.

SMD-предохранители востребованы, в первую очередь, в низковольтных приложениях, в которых ключевую роль играют компактные размеры. Кроме того, они существенно упрощают процесс монтажа, так как распаиваются вместе с другими SMD-компонентами на печатную плату. Среди дополнительных преимуществ SMD-предохранителей можно отметить высокое быстродействие, малое сопротивление и широкий диапазон рейтингов тока.

В настоящее время Littelfuse предлагает почти сорок серий SMD-предохранителей с различными характеристиками (рисунок 14, таблица 1):

  • с рейтингом тока 0,62…40 А;
  • с рейтингом напряжения до 600 В;
  • с быстродействием TT, F и FF;
  • с типоразмером от 0402;
  • с диапазоном рабочих температур -55…150°C.
Рис. 14. SMD-предохранители от Littelfuse

Рис. 14. SMD-предохранители от Littelfuse

Таблица 1. Характеристики серий SMD-предохранителей Littelfuse

Тип Наименование Ампер-секундные характеристики Корпус Рейтинг
тока, А
Рейтинг напряжения, В Отключающая способность, А Рабочая температура, °С
TT F FF
Керамические 437 + 1206 0,25…8 125/63/32 50 -55…150
438 + 0603 0,25…6 32/24 50
440 + 1206 1,75…8 32 50
441 + 0603 2…6 32 50
469 + 1206 1…8 24/32 24…63
501 + 1206 10, 12, 15, 20 32 150
Тонкопленочные 466 + 1206 0,125…5 125/63/32 50 -55…90
429 + 1206 7 24 35
468 + 1206 0,5…3 63/32 35…50
467 + 0603 0,25…5 32 35…50
494 + 0603 0,25…5 32 35…50
435 + 0402 0,25…5 32 35
Nano2® Fuse 448 + 2410 0,062…15 125/65 35…50 -55…125
449 + 2410 0,375…5 125 50
451/453 + 2410 0,062…15 125/65 35…50
452/454 + 2410 0,375…12 125/72 50
456 + 4012 20, 25, 30, 40 125 100
458 + 1206 1,0…10 75/63 50
443 + 4012 0,5…5 250 50
464 + 4818 0,5…6,3 250 100
465 + 4818 1…6,3 250 100
462 + 4118 0,500…5 350 100 -40…80
485 + 4818 0,500…3,15 600 100 -55…125
Telelink® Fuse 461 4012 0,5…2,0 600 60 -55…125
461E 4012 1,25 600 60
OMNI-BLOK® 154 + * 0,062…10,0 125 35…50 -55…125
154T + * 0,375…5 125 50
Предохранители с держателем 157 + * 0,062…10 125 35…50 -55…125
157T + * 0,375…5 125 50
159   0,5…2 600 60
160 + * 0,5…5 250 50
PICO® SMF 459 + * 0,062…5 125 50…300 -55…125
460 + * 0,5…5 125 50
Flat Pak 202 + * 0,062…5 250 50 -55…125
203 + * 0,25…5 250 50
EBF 446 + * 2,0…10,0 350 100 -40…125
447 + * 2,0…10,0 350 100
* – Корпус нестандартного размера.

Серии керамических SMD-предохранителей отличаются высокой температурной стабильностью и способны работать при повышенной температуре (до 150°С). Это позволяет использовать их в промышленной электронике и в сверхкомпактных приложениях с ограниченными возможностями по отводу тепла: в серверах, принтерах, сканерах, модемах и прочем.

Тонкопленочные SMD-предохранители используются в качестве элементов вторичной защиты в устройствах, требующих компактных габаритных размеров. В частности, серия 435 имеет типоразмер всего 0402. Основными приложениями для этой группы предохранителей станут сотовые телефоны, цифровые камеры, аккумуляторные сборки и прочее.

Предохранители Nano2® Fuse отличаются компактными размерами, широким диапазоном рейтингов тока 0,62…40 А и значительным диапазоном рабочих температур -55…125°С. Благодаря перечисленным достоинствам Nano2® Fuse могут применяться в широком спектре приложений от ноутбуков и ЖК-мониторов до серверов и промышленного оборудования.

Предохранители Telelink® Fuse предназначены для работы в составе телекоммуникационного оборудования. При совместном использовании с защитным тиристорами SIDACtor® или газоразрядниками Greentube производства Littlefuse они позволяют создавать готовое решение для защиты оборудования, соответствующее рекомендациям GR-1089–Core, TIA-968-A, UL/EN/IEC 60950, ITU K.20 и K.21.

Предохранители OMNI-BLOK представляют собой комбинацию из предохранителя и держателя, которые распаиваются на плату с помощью обычного поверхностного монтажа. В дальнейшем пользователь может самостоятельно заменить предохранитель без необходимости пайки.

PICO SMF – версия предохранителей PICO для поверхностного монтажа. Они отличаются широким диапазоном номинальных токов 0,62…5 А и высоким быстродействием.

Flat Pak – предохранители с широким диапазоном номинальных токов 0,62…5 А, рабочим напряжением до 250 В AC и двумя вариантами исполнения: SMD и DIP (монтаж в отверстия).

EBF – серия SMD-предохранителей, разработанная для схем с электронным балластом и мощных инверторов. Существует версия для монтажа в отверстия с теми же габаритными размерами.

Littelfuse предлагает почти три десятка серий предохранителей с радиальными выводами (рисунок 15, таблица 2):

  • с рейтингом тока 0,02…10 А;
  • с рейтингом напряжения до 300 В;
  • с быстродействием TT, М, F и FF;
  • с диапазоном рабочих температур до -55…125°C.
Рис. 15. Предохранители Littelfuse с радиальными выводами

Рис. 15. Предохранители Littelfuse с радиальными выводами

Таблица 2. Характеристики серий предохранителей Littelfuse с радиальными выводами

Тип Наименование Ампер-секундные характеристики Рейтинг
тока, А
Рейтинг напряжения, В Отключающая способность, А Рабочая температура, °С
TT M F FF
Micro/TR3 262/268/269 + 0,002…5 125 10,000 -55…125
272/278 + 0,002…5 125 10,000 -55…125
273/274/279 + 0,002…5 125 10,000 -55…85
303 + 0,5…5 125 50 –55…70
TR5 370 + 0,4…6,3 250 35…50 -40…85
372 + 0,4…6,3 250 35…50
373 + 0,5…10 250 50
374 + 0,5…10 250 50
382 + 1…10 250 100
383 + 1…10 300 50…100
TE5 369 + 1…6,3 300 50 -40…85
385 + 0,35…1,5 125 50
389 + 0,6 250 10
391 + 0,125…4 65 50
392 + 0,8…6,3 250 25…63
395 + 0,05…6,3 125 100
396 + 0,05…6,3 125 100
397 + 0,35…1,5 125 50
398 + 0,125…4 65 50
399 + 0,125…4 65 50
400 + 0,5…6,3 250 130
804 + 0,8…6,3 250 150 -40…125
808 + 2…5 250 100 -40…85
TE7 807 + 0,8…6,3 300 100 -40…125

В номенклатуре Littelfuse  представленная обширная группа предохранителей с аксиальными выводами (рисунок 16, таблица 3):

  • с рейтингом тока 0,1…50 А;
  • с рейтингом напряжения до 1000 В;
  • с быстродействием TT, М, F и FF;
  • с диапазоном рабочих температур до -55…125°C. 
Рис. 16. Предохранители Littelfuse с аксиальными выводами

Рис. 16. Предохранители Littelfuse с аксиальными выводами

Таблица 3. Характеристики серий предохранителей Littelfuse с аксиальными выводами

Тип Наименование Ампер-секундные характеристики Рейтинг
тока, А
Рейтинг напряжения, В Отключающая способность, А Рабочая температура, °С
TT M F FF
PICO/PICO II Axial 251/253 + 0,062…15 125 300DC/50AC -55…125
275 + 20…30 32 300DC/50AC
263 + 0,062…5 250 50
471 + 0,5…5 125 50
472 + 0,5…5 125 50
473 + 0,375…7 125 50
265/266/267 + 0,062…15 125 300DC/50AC
3.6×10 мм 874 + 0,1…10 250 50 -55…125
875 + 0,1…10 250 50
876 + 0,125…5 250 35–50
877 + 2…6,3 250 35–63
4.5×14.5 мм (2AG) 208 + 0,125…10 350 100 -55…125
209 + 0,25…7 350 100
220 Специальная серия 0,3…7 250/300/350 35…100
2205 + 0,25…2,5 250 35
224/225 + 0,375…10 250/125 35…500
229/230 + 0,25…7 250/125 35…400
5×20 мм 201P 0,05…1,25 250 80 -25…70
217 + 0,032…15 250 35…150 -55…125
218 + 0,032…16 250 35…100
213 + 0,2…6,3 250 35…63
219XA + 0,04…6,3 250 150
216 + 0,05…16 250 750…1500
216SP + 1…10 250 1500
215 + 0,125…20 250 400/1500
215SP + 1…10 250 1500
232 + 1…10 250/125 300/10,000
235 + 0,1…7 250/125 35…10,000
233 + 1…10 125 10,000 -55…125
234 + 1…10 250 100…200
239 + 0,08…7 250/125 35…10,000
285 + 0,125…20 250 400…1500
477 + 0,5…16 400DC/500AC 100…1500
977 + 0,5…16 450DC/500AC 200/100
6.3×32 мм (3AG/3AB) 312/318 + 0,062…35 250/32 35…300
313/315 + 0,01…30 250/125/32 35…300
314/324 + 0,375…40 250 35…1000
322 + 12…30 65 200…1000
332 + 1…10 250 100/200
325/326 + 0,01…30 250 100…600
328 Специальная серия 21 300 200
505 + 10…30 450/500 20,000…50,000
506 + 15…20 600DC 10,000
508 1000 VAC/DC (высоковольтный) 0,315…1 1000 10,000
688 70 VDC 5…40 70 2500

Взрывобезопасные предохранители Littelfuse

Помимо плавких предохранителей общего назначения, Littelfuse предлагает и специализированные серии, например, взрывобезопасные предохранители 242, PICO 259, PICO 259-UL913, PICO 304 и PICO 305 (рисунок 17, таблица 4).

Рис. 17. Взрывобезопасные серии предохранителей Littelfuse

Рис. 17. Взрывобезопасные серии предохранителей Littelfuse

Таблица 4. Характеристики взрывобезопасных серий предохранителей Littelfuse

Наименование Рейтинг
тока, А
Рейтинг
напряжения, В
Отключающая способность, А Рабочая
температура, °С
242 0,05…0,25 4000 -40…125
PICO 259 0,062…5 50 (125 В AC), 300 (125 В DC) -55…125
PICO 259-UL913 0,062…5 50 (125 В AC), 300 (125 В DC) Зависит от рейтинга тока
PICO 304 0,05…0,75 1500 -40…85
PICO 305 0,05…0,75 1500 Зависит от рейтинга тока

Во взрывоопасных средах непременным условием обеспечения безопасности становится использование электрических приборов, исключающих возникновение искрения. В качестве примера можно привести химическую, нефтегазовую, горнодобывающую, пищевую и медицинскую отрасли. Требования к таким приложениям описаны в ГОСТ 31610.11-2014 (IEC 60079-11:2011) «Взрывоопасные среды. Часть 11. Оборудование с видом взрывозащиты «Искробезопасная электрическая цепь «i» (с поправкой)». Чтобы обеспечить гарантированную защиту от искрения, предохранители серий 242, PICO 259, PICO 259-UL913, PICO 304 и PICO 305 имеют дополнительное защитное покрытие (рисунок 18) [2].

Рис. 18. Особенности конструкции искробезопасных предохранителей

Рис. 18. Особенности конструкции искробезопасных предохранителей

Предохранители серии 242 отличаются достаточно узким диапазоном рейтингов тока 0,05…0,25 А, но обладают рекордно высокой отключающей способностью 4 кА. Представители серии имеют два варианта исполнения – для выводного монтажа в отверстия и для установки в держатель.

Предохранители PICO 259 используются для защиты низковольтных цепей (до 190 В) и имеют широкий диапазон рейтингов тока 0,062…5 А. Эти предохранители предназначены для монтажа в отверстия.

Серия PICO 259-UL913 является аналогом серии PICO 259, но отвечает требованиям UL 913.

Предохранители серии PICO 304, в отличие от других взрывобезопасных серий, предназначены для поверхностного монтажа. Они обладают относительно узким диапазоном рейтингов тока 0,05…0,75 А, но характеризуются высокой отключающей способностью 1,5 кА и рейтингом напряжения 375 В.

Предохранители PICO 305 по своим характеристикам соответствуют серии PICO 304, но предназначены для монтажа в отверстия.

Заключение

Компания Littelfuse является лидером в области производства плавких предохранителей. В номенклатуре компании присутствуют SMD-предохранители, предохранители с радиальными и аксиальными выводами. Кроме того, Littelfuse предлагает специализированные серии предохранителей. Например, серии 242, PICO 259, PICO 259-UL913, PICO 304 и PICO 305, предназначены для взрывоопасных сред.

Выбор оптимального предохранителя оказывается не таким простым, как может показаться на первый взгляд. Чтобы упростить жизнь разработчикам, компания создала онлайн-утилиту Littelfuse iDesign Tool, которая максимально упрощает выбор оптимального предохранителя и автоматизирует расчеты запасов по току и I2t.

Литература

  1. Selection Guide. Fuse Characteristics, Terms and Consideration Factors. Littelfuse, 2014.
  2. Application Note: Enhancing Workplace Safety in Hazardous Locations with PICO® 259-UL913 and 305 Series Intrinsic Safety Fuses. Littelfuse, 2013.
  3. Littelfuse.
  4. Fuse Characteristics, Terms and Consideration Factors.

Исчтоник: Компэл

Добавить комментарий

Обсудить эту статью на форуме (1 ответов).

Copyright 2019 © simple-devices.ru.
При использовании материалов ссылка на simple-devices.ru обязательна.