- Родительская категория: Новости
- Категория: Это интересно
- Автор: Генератор статей
- Просмотров: 2979
Почему импульсные преобразователи «не любят» «легкую» нагрузку. Часть 2
Режим холостого хода
В соответствии с (7) и (9), поддержку режима легкой нагрузки можно обеспечить путем уменьшения среднего значения магнитного потока ФСР, желательно без изменения t1 и, соответственно, ΔФ. Согласно (5), переменная составляющая ΔФ определяется с учетом знака магнитного потока, поэтому, если принять ФНАЧ = –ФКОН, то, по формуле (8), получим ФСР = 0 при произвольных значениях ФНАЧ, ФКОН.
Что нам это дает? Переменная составляющая магнитного потока ΔФ зависит от соотношения напряжений на входе и выходе преобразователя; от UВХ/UВЫХ, согласно (9), зависит t1, а от него, согласно (4), ΔФ. Поэтому ΔФ во время работы преобразователя фактически определяется контуром стабилизации напряжения. Если при 100% мощности преобразователь работает в безразрывном режиме (ФНАЧ > 0), то по мере уменьшения тока нагрузки значения ФНАЧ и ФКОНуменьшаются на одинаковую величину без изменения ΔФ. Эти процессы происходят до тех пор, пока ФНАЧ не достигнет нулевого значения (Рисунок 6). С этого момента преобразователь переходит в режим легкой нагрузки, и его дальнейшая работа уже зависит от элементной базы силовой части.
Рисунок 6. | Магнитный поток дросселя при уменьшении тока нагрузки. |
Если ключ S2 сделан на основе неуправляемого полупроводникового диода, то преобразователь перейдет в разрывный режим, при котором ΔФ и ФСР уменьшаются одновременно за счет уменьшения t1. Но если ключи S1 и S2 способны пропускать ток в обоих направлениях, например, при реализации их на основе MOSFET, то преобразователь перейдет в режим принудительной непрерывной проводимости, при котором знаки ФНАЧ и ФКОН будут отличаться. В этом режиме переменная составляющая ΔФ не изменяется, а уменьшение преобразуемой мощности происходит только за счет уменьшения ФСР.
Рисунок 7. | Работа преобразователя в режиме холостого хода. |
Дальнейшее уменьшение тока нагрузки приведет к еще большему смещению магнитного потока дросселя в отрицательную область. При полном отключении нагрузки преобразователь перейдет в режим холостого хода, особенностью которого является соблюдение равенства ФНАЧ = –ФКОН. В этом режиме между конденсаторами С1 и С2 происходит обмен энергией величиной WХХ(Рисунок 7):
(10) |
При замыкании ключа S1 энергия WХХ из дросселя L1 вначале передается в конденсатор С1 до тех пор, пока магнитный поток не достигнет нулевого значения, и дроссель L1 не разрядится. После этого под действием напряжения на конденсаторе С1 энергия снова начнет поступать в дроссель, но уже при другой полярности магнитного потока. К моменту размыкания ключа S1 в дросселе L1 будет содержаться WХХ энергии, которая после коммутации ключей S1 и S2 начнет передаваться в конденсатор С2. В середине второго этапа преобразования, после полного разряда дросселя, под действием напряжения на конденсаторе С2 магнитный поток снова изменит знак, и дроссель начнет потреблять энергию из конденсатора С2.
Очевидным достоинством принудительной непрерывной проводимости при легкой нагрузке является полная управляемость преобразователя. В этом режиме длительности t1 и t2 не зависят от тока нагрузки, что обеспечивает максимально эффективную регулировку выходного напряжения, в отличие от разрывного режима и режима пропуска импульсов. К недостаткам следует отнести повышенные потери из-за вынужденного преобразования энергии WХХ, что для некоторых приложений может быть серьезной проблемой.
Режим принудительной непрерывной проводимости возможен только в случаях, когда ключи S1 и S2 обеспечивают протекание тока в обоих направлениях, ведь при переменном магнитном потоке, в соответствии с законом полного тока, ток в обмотках также будет переменным. Для рассматриваемого обратноходового преобразователя, в котором ток всегда протекает только по одной обмотке, связь токов I1 и I2 обмоток W1 и W2 с магнитным потоком F будет определяться формулами:
(11) |
Из доступной элементной базы пропускать ток в обоих направлениях могут только MOSFET, поэтому режим принудительной непрерывной проводимости возможен лишь в синхронных преобразователях на основе этого типа полупроводниковых приборов (Рисунок 8). Если хоть один из ключей S1 и S2 выполнен на основе биполярных транзисторов, IGBT, диодов или других элементов, в которых ток может протекать только в одном направлении, для реализации режима принудительной непрерывной проводимости необходимо принимать дополнительные меры.
Рисунок 8. | Синхронный и несинхронный преобразователи. |
Также становится очевидной и роль конденсаторов С1 и С2, которые выступают не только в качестве фильтров, но еще и в качестве накопителей энергии, принципиально необходимых для работы при легкой нагрузке.
Режим рекуперации
А что произойдет, если среднее значение магнитного потока дросселя ФСР будет иметь знак, противоположный ΔФ, например, если ФНАЧ < 0 и ФКОН < 0, при соблюдении условия ФНАЧ < ФКОН? В этом случае, согласно (7), WИМП < 0, и энергия через преобразователь пойдет в обратном направлении – с выхода на вход (Рисунок 9).
Рисунок 9. | Режим рекуперации. |
Когда такой режим необходим? Например, если вход преобразователя подключен к системной питающей шине, а выход – к аккумуляторной батарее, содержащей аварийный запас энергии (Рисунок 10). В нормальном режиме система питается от основного источника, а преобразователь выполняет функцию зарядного устройства, при этом энергия передается с входа на выход преобразователя, что соответствует режиму передачи. Если аккумулятор заряжен, то энергия никуда не передается, и преобразователь работает в режиме холостого хода. При аварии основного источника энергия из аккумулятора через преобразователь, работающий в режиме рекуперации, поступает на шину питания, обеспечивая питанием нагрузку.
Рисунок 10. | Пример работы преобразователя в трех режимах. |
Необходимо отметить, что переход из одного режима в другой происходит автоматически, без какого-либо участия со стороны контроллера, основной задачей которого в этом случае является только поддержание нужного соотношения t1/t2 так, чтобы, согласно (9), обеспечить или требуемое значение UВХ/UВЫХ, или требуемый ток нагрузки.
Заключение
Для того чтобы режим легкой нагрузки не создавал проблем, магнитный поток дросселя должен иметь возможность изменять свою полярность. Если это условие не выполняется, то чем «легче» нагрузка, тем сложнее обеспечить стабильное напряжение на выходе, поскольку при однополярном магнитном потоке дросселя импульсный преобразователь без нагрузки работать не может в принципе.
При DC/DC преобразовании это проще всего обеспечить при помощи синхронных преобразователей на основе MOSFET. Также это автоматически выполняется в AC/AC преобразователях, поскольку в них протекание переменного тока через силовые ключи, впрочем, как и работа на реактивную нагрузку, является обязательным условием. В остальных случаях необходимо внимательно прорабатывать режим легкой нагрузки, для обеспечения требуемых точности, надежности, КПД и прочих характеристик преобразователя.
Список источников
- Кадацкий А.Ф., Русу А.П. Анализ принципов построения и режимов работы импульсных преобразователей электрической энергии // Практическая силовая электроника. – 2016. – №2(62). – С.10 – 24.
- Кадацкий А.Ф., Русу А.П. Анализ электрических и магнитных процессов в дросселях импульсных преобразователей электрической энергии // Технология и конструирование в электронной аппаратуре (ТКЭА) – 2016. – №6. – С.17 – 29.
- Русу А.П. Импульсное преобразование переменного тока // РадиоЛоцман – 2017. – №6. – С.24 – 32.
- Русу А.П. Откуда появились базовые схемы преобразователей. Часть 1 // РадиоЛоцман – 2017. – №9. – С.28 – 31.
- Русу А.П. Откуда появились базовые схемы преобразователей. Часть 2 // РадиоЛоцман – 2017. – №10. – С. 32 – 38.